lunes, 22 de noviembre de 2010

2da publicacion. nanyoly mendez. CAF. 1er parcial

Applications

Applications of RF MEMS resonators and switches include oscillators and routing networks. RF MEMS components are also applied in radar sensors (passive electronically scanned (sub)arrays and T/R modules) and software-defined radio (reconfigurable antennas, tunable band-pass filters).


Antennas
Polarization and radiation pattern reconfigurability, and frequency tunability, are usually achieved by incorporation of lumped components based on III-V semiconductor technology, such as single pole single throw (SPST) switches or varactor diodes. However, these components can be readily replaced by RF MEMS switches and varactors in order to take advantage of the low insertion loss and high Q factor offered by RF MEMS technology. In addition, RF MEMS components can be integrated monolithically on low-loss dielectric substrates, such as borosilicate glass, fused silica or LCP, whereas III-V semiconducting substrates are generally lossy and have a high dielectric constant. A low loss tangent and low dielectric constant are of importance for the efficiency and the bandwidth of the antenna.


The prior art includes an RF MEMS frequency tunable fractal antenna for the 0.1–6 GHz frequency range, and the actual integration of RF-MEMS on a self-similar Sierpinski gasket antenna to increase its number of resonant frequencies, extending its range to 8 GHz, 14 GHz and 25 GHz , an RF MEMS radiation pattern reconfigurable spiral antenna for 6 and 10 GHz, an RF MEMS radiation pattern reconfigurable spiral antenna for the 6–7 GHz frequency band based on packaged Radant MEMS SPST-RMSW100 switches, an RF MEMS multiband Sierpinskifractal antenna, again with integrated RF MEMS switches, functioning at different bands from 2.4 to 18 GHz, and a 2-bit Ka-band RF MEMS frequency tunable slot antenna.


Filters
RF bandpass filters are used to increase out-of-band rejection, if the antenna fails to provide sufficient selectivity. Out-of-band rejection eases the dynamic range requirement of low noise amplifier LNA and mixer in the light of interference. Off-chip RF bandpass filters based on lumped bulk acoustic wave (BAW), ceramic, surface acoustic wave (SAW), quartz crystal, and thin film bulk acoustic resonator (FBAR) resonators have superseded distributed RF bandpass filters based on transmission line resonators, printed on substrates with low loss tangent, or based on waveguide cavities. RF MEMS resonators offer the potential of on-chip integration of high-Q resonators and low-loss bandpass filters. The Q factor of RF MEMS resonators is in the order of 1000-1000 .


Tunable RF bandpass filters offer a significant size reduction over switched RF bandpass filter banks. They can be implemented using III-V semiconducting varactors, BST or PZT ferroelectric and RF MEMS switches, switched capacitors and varactors, and yttrium iron garnet (YIG) ferrites. RF MEMS technology offers the tunable filter designer a compelling trade-off between insertion loss, linearity, power consumption, power handling, size, and switching time .


Phase shifters
RF MEMS phase shifters have enabled wide-angle passive electronically scanned arrays, such as lenses, reflect arrays, subarrays and switched beamforming networks, with high effective isotropically radiated power (EIRP), also referred to as the power-aperture product, and high Gr/T. EIRP is the product of the transmit gain, Gt, and the transmit power, Pt. Gr/T is the quotient of the receive gain and the antenna noise temperature. A high EIRP and Gr/T are a prerequisite for long-range detection. The EIRP and Gr/T are a function of the number of antenna elements per subarray and of the maximum scanning angle. The number of antenna elements per subarray should be chosen to optimize the EIRP or the EIRP x Gr/T product, as shown in Fig. 3 and Fig. 4.


Fig. 3: Radar sensor sensitivity: EIRP x Gr/T




Fig. 4: EIRP versus number of antenna elements in a passive subarray


Passive subarrays based on RF MEMS phase shifters may be used to lower the amount of T/R modules in an active electronically scanned array. The statement is illustrated with examples in Fig. 3: assume a one-by-eight passive subarray is used for transmit as well as receive, with following characteristics: f = 38 GHz, Gr = Gt = 10 dBi, BW = 2 GHz, Pt = 4 W. The low loss (6.75 ps/dB) and good power handling (500 mW) of the RF MEMS phase shifters allow an EIRP of 40 W and a Gr/T of 0.036 1/K. The number of antenna elements per subarray should be chosen in order to optimize the EIRP or the EIRP x Gr/T product, as shown in Fig. 3 and Fig. 4. The radar range equation can be used to calculate the maximum range for which targets can be detected with 10 dB of SNR at the input of the receiver.





in which kB is the Boltzmann constant, λ is the free-space wavelength, and σ is the RCS of the target. Range values are tabulated in Table 1 for following targets: a sphere with a radius, a, of 10 cm (σ = π a2), a dihedral corner reflector with facet size, a, of 10 cm (σ = 12 a4/λ2), the rear of a car (σ = 20 m2) and for a contemporary non-evasive fighter jet (σ = 400 m2). A Ka-band hybrid ESA capable of detecting a car 100 m in front and engaging a fighter jet at 10 km can be realized using 2.5 and 422 passive subarrays (and T/R modules), respectively.


Nanyoly Mendez
CAF

No hay comentarios:

Publicar un comentario